Are We Drawing the Correct Conclusions? Regression Analysis in the Nonprofit Literature
DOI:
https://doi.org/10.22230/cjnser.2016v7n1a213Keywords:
Regression analysis, Multicollinearity, Statistical significance / Analyse de régression, Multicolinéarité, Signification statistiqueAbstract
Linear models are the most commonly used analytical tools in the nonprofit literature. Academics and practitioners utilize these models to test different hypotheses in support of their research efforts, seeking to find significant results that substantiate their theories. And yet the authors of this article have discovered a surprisingly large number of insignificant results in articles from established nonprofit journals. Insignificant hypotheses and Type II errors surely account for a number of these results, but the authors believe the majority of these results are due to a different cause, one that is detectable and preventable: multicollinearity.
Dans les articles sur les organismes sans but lucratif, les modèles linéaires sont les outils analytiques les plus communément utilisés. En effet, académiques et praticiens utilisent tous les deux ces modèles pour évaluer diverses hypothèses relatives à leurs recherches, espérant trouver des résultats significatifs pouvant confirmer leurs théories. Pourtant, les auteurs de cet article ont découvert un nombre surprenant de résultats non significatifs dans des articles de revues établies sur les organismes sans but lucratif. Des hypothèses non significatives et des erreurs du type II expliquent sûrement certains de ces résultats, mais les auteurs croient que la majorité des résultats ont une cause différente qui est détectable et évitable : la multicolinéarité.
Downloads
References
Austin, P. and Tu, J. (2004). “Automated Variable Selection Methods for Logistic Regression Produced Unstable Models for Predicting Acute Myocardial Infarction Mortality.” Journal of Clinical Epidemiology, 57, 1138-1146.
Bradbury, S., Freckleton, R., Stephens, P., and Whittingham, M. (2006). “Why Do We Still Use Stepwise Modelling in Ecology and Behavior?” Journal of Animal Ecology, 75(5), 1182-1189.
Farrar, D. & Glauber, R. (1967). “Multicollinearity in Regression Analysis: The Problem Revisited.” The Review of Economics and Statistics, 49(1), 92-107.
Hurvich, C. and Tsai, C. (1990). “The Impact of Model Selection on Inference in Linear Regression.” The American Statistician, 44(3), 214-217.
Lee, T., Johnson, E., & Prakash, A. (2012). “Media Independence and Trust in NGOs: The Case of Postcommunist Countries.” Nonprofit and Voluntary Sector Quarterly, 41(8), 8-35.
Tukey, J. (1980). “Methodological Comments Focused on Opportunities.” reprinted in The Collected Works of John W. Tukey, ed. Lyle V. Jones, Murray Hill, NJ: Bell Laboratories.
Downloads
Published
Issue
Section
License
Submission of an original manuscript to the Canadian Journal of Nonprofit and Social Economy Research / Revue canadienne de recherche sur les OSBL et l'économie sociale [thereafter CJNSER] will be taken to mean that it represents original work not previously published, and that it is not being considered elsewhere for publication.
The journal takes the stance that the publication of scholarly research is meant to disseminate knowledge and, in a not-for-profit regime, benefits neither publisher nor author financially. It sees itself as having an obligation to its authors and to society to make content available online now that the technology allows for such a possibility. In keeping with this principle, the journal will publish all of its issues online.
Authors who publish in CJNSER agree to release their articles under the Creative Commons 4.0 International Licence (CC BY). This licence allows anyone to copy and distribute the article provided that appropriate attribution is given. For details of the rights an author grants users of their work, please see the licence summary and the full licence.
[Content published between 2010 and 2019-10 was licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 2.5 Canada (CC BY-NC-ND 2.5 CA) License. Content published between 2019-10 to 2023-12 was licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License. Content published after 2023-12 is licensed under the Creative Commons 4.0 International (CC BY) License.]